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Abstract

An approximate mathematical model of contact melting of an unfixed material in an elliptical capsule is developed.

The main characteristic scales and non-dimensional parameters which describe the principal features of the melting

process are found. Choosing a special heat flux distribution on the wall of the capsule allows us to derive a closed-form

evolution equation for the motion of the solid accounting for the energy convection in the liquid, expressed through the

non-linearity of the temperature distribution across the molten layer. It is shown that the melting rate of the solid

depends on the shape of the capsule. Generally, elliptical capsules show higher rate of melting than circular ones.

Elongated capsules provide more effective melting than oblate ones, even though they have the same aspect ratios and

vertical cross-sectional areas. This phenomenon is caused by the fact, that the pressure necessary to support the solid is

larger for the elongated capsules than that for oblate ones, which leads to thinning of the molten layer along with the

increase of the heat flux across it. The time required for complete melting can be achieved by the right choice of

the shape of the capsule, which is specified by the value of the aspect ratio. The found influence of the capsule shape on

the melting rate can be used for design and optimization of practical latent-heat–thermal-energy systems. � 2002

Elsevier Science Ltd. All rights reserved.

1. Introduction

Analysis of close-contact melting of a solid in a cavity

is motivated by application in latent heat-of-fusion

thermal-storage systems. Contact melting in a circular

horizontal cylinder has been studied numerically by

Saitoh and Hirose [1], analytically and experimentally by

Bareiss and Beer [2]. Contact melting in a spherical

capsule was investigated numerically by Moore and

Bayazitoglu [3] and later, applying the technique pro-

posed in [2], Bahrami and Wang [4], Roy and Sengupta

[5] as well as Fomin and Saitoh [6] reported analytical

solutions. The general scheme for the scale analysis

of the contact melting problem was proposed by Bejan

[7]. Although the aforementioned investigations high-

light the main characteristics of contact melting inside a

capsule, the effect of the shape factor of its cross-section

was analysed only for elliptic cylinders [8]. Moreover, a

simple linear distribution for the temperature has been

assumed, which is acceptable only for very small Stefan

numbers. In 1998, Saitoh [9] pointed out that the

shape of the capsule is an important factor which

should be taken into consideration for optimal design

and construction of the latent-heat–thermal-storage

systems.

In the present paper the approximate approach de-

veloped by Bareiss and Beer [2] is applied with the higher

order of accuracy with regard to the temperature dis-

tribution for the mathematical modelling of contact

melting in a horizontal elliptical cylinder and ellipsoidal

capsule. It will be shown, that finding the temperature

distribution to the second-order with regard to the Ste-

fan number subject to the temperature distribution on

the wall of the capsule, being constant in space, is tan-

tamount to imposing the heat flux on the wall directly

proportional to the heat flux at the melting interface.

The influence of the shape of the capsule on the melting
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rate will be determined with the help of the derived

model of melting inside an elliptic capsule of differ-

ent aspect ratios and supported by physical consider-

ations.

2. System model and analysis

Melting process within an elliptical capsule is illus-

trated in Fig. 1. The equation ðx�=aÞ2 þ ðy�=bÞ2 ¼ 1 de-

scribes a generating curve of the surface of the capsule

which can be an elliptical cylinder or an ellipsoid of

revolution. In the first case ðx�; y�Þ are Cartesian coor-

dinates, and in the second case ðx�; y�Þ are cylindrical

coordinates, where x� is the radial distance and y� is the
axis of symmetry. Initially, the elliptical capsule contains

material in solid phase, which occupies the full space of

the capsule. Then the wall temperature is raised to the

value T �
w > T �

m and is held at this value during the period

necessary to melt the solid completely. The unfixed solid

bulk sinks 2 because its density is higher than that of the

molten liquid. The downward motion of the solid core is

characterised by the time-dependent shift s� of a mate-

rial-fixed reference point, which is chosen to be the

centre of the originally elliptical core. The motion of the

solid bulk is accompanied by the generation of liquid at

Nomenclature

a; b the horizontal and vertical semi-axes of the

ellipse

Ar Archimedes number (¼ qlgb
3ðqs � qlÞ=l2)

b the capsule aspect ratio (¼ b=a) (b > 1

for elongated and b < 1 for oblate

capsules)

c parameter (¼ b2=a2 � 1)

cs; cl the solid and liquid specific heat capacities

g gravitational acceleration

h the non-dimensional molten layer thickness

h projection of h on the y-direction

ks; kl the solid and liquid heat conductivities

l the tangential coordinate (¼ l�=a), as shown
in Fig. 1

Lm the melting latent heat

n the transverse coordinate (¼ n�=h�), as

shown in Fig. 1

p the liquid pressure

p the excess liquid pressure (¼ ðp� � qlgðb�
y�ÞÞ=p0)

Pr Prandtl number (¼ cll=kl)
qw the transverse heat flux through the wall of

the capsule

q constant (¼ qw= cos h)
Ra Rayleigh number (¼ gbqlqsb

3Lm=ðlklÞ)
s the shift of the reference point fixed in the

solid core (¼ s�=2b)
_ss ¼ ds=ds melting rate

Ste Stefan number (¼ clðT �
w0 � T �

mÞ=Lm)

T the non-dimensional liquid temperature

T �
m the dimensional melting temperature

Tw the non-dimensional wall temperature

T �
w0 the characteristic wall temperature

u, w dimensionless tangential and transverse ve-

locities

ut, wt scales for the tangential and transverse

velocities in the thermal boundary layer

along the melting surface on the top of the

solid

x the dimensionless horizontal coordinate

(¼ x�=a)
y the dimensionless vertical coordinate

(¼ y�=b)

Greek symbols

b coefficient of thermal expansion

d thermal boundary layer thickness

e the ratio of the molten layer thickness scale

to the capsule semi-axis (¼ h0=a)
l the liquid viscosity

m ¼ 0; 1 parameter determining if an elliptical cylin-

der or an ellipsoid of revolution is considered

qs; ql the densities of the solid and liquid

h ¼ ðn; yÞ the angle between the vertical axis and the

normal to the capsule wall, as shown in

Fig. 1

s the non-dimensional time

sm the time required to complete melting of the

solid core

srm the time of complete melting in scales for a

sphere or a circle

Superscript

� dimensional quantity

Subscripts

l liquid

m melting

s solid

w wall of the capsule

0 scales

2 We do not treat ice.
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the melting surface. This liquid is squeezed up to the

space above the solid through a narrow gap between the

melting surface and the wall of the capsule. Conven-

tionally, the solid–liquid interface can be divided into

two parts by the time dependent value le of the tan-

gential coordinate (Fig. 1): the bottom interface ðl < leÞ,
which represents the close-contact melting area, where

most of the intensive melting occurs, and the upper in-

terface, where much slower ‘‘latent’’ melting takes place.

Experiments on melting in a circular horizontal tube

conducted by Bareiss and Beer [2] showed that melt-

ing at the upper surface of the solid generated ap-

proximately 10% of the total melt. Moreover, in these

experiments the upper surface of the solid core was

very insignificantly changing its shape with time and,

therefore, in the model the shape of this surface could

be considered as approximately the same throughout

the entire process. It was also found that the thickness

of the molten layer in the close-contact area is con-

siderably smaller than the characteristic size of the

cavity.

The experimentally observed effect of relatively slow

melting at the upper surface of the solid can be readily

justified by scaling analysis. Obviously, the typical

amount of heat transferred to the upper surface of the

phase-change material is inversely proportional to the

thickness of the thermal boundary layer d along its

surface, while the heat transferred to the melting surface

on the bottom of the capsule is inversely proportional to

the typical molten layer thickness, h0. Hence, the heat

transferred from the upper surface of the capsule is a

small fraction of the order Oðh0=dÞ of the total heat

consumed during melting. As a result, the amount of

solid melted at the top of the capsule constitutes Oðh0=dÞ
part of the total volume of the phase-change material.

For the n-octadecane contact melting conditions our

estimates presented below show that melting of a solid in

the upper part of the capsule is 10 times slower than

melting on the capsule’s bottom. The latter analytical

estimate is in a striking consistency with the experi-

mental observations of Bareiss and Beer [2]. Moreover,

it will be shown that the influence of the convection in

the upper part of the capsule is indifferent to its aspect

ratio and can be taken into account by proper re-nor-

malising. The latter confirms that the present model of

contact melting in capsules of different aspect ratios has

at least the same order of accuracy as previously adop-

ted in the models for the capsules with the circular

cross-sections [2–6]. The validation of the above-cited

theoretical models by the comparison with the experi-

mental results, available for the circular capsules,

simultaneously validates our model as well. This is be-

cause the inaccuracy due to the natural convection on

the top of the capsule is not affected by the variation of

the capsule’s aspect ratio, and, therefore, the circular

capsules can be taken for the model validation.

The above discussion determines the primary as-

sumptions in modelling of the process under consider-

ation:

1. The relative contribution of the melting at the upper

surface of the solid to the whole melting does not de-

pend on the capsule’s aspect ratio.

2. The solid core is at the melting point.

3. Thermophysical properties of the materials are con-

stant.

4. The pressure at the upper interface between the solid

and liquid is hydrostatic.

5. Since the thickness of the liquid layer in the close-

contact area is very small in comparison with the di-

mensions of the capsule, lubrication approximation

can be implemented for mathematical modelling of

the heat and mass transfer processes in the molten

layer. Therefore, the local two-dimensional curvilin-

ear orthogonal coordinate system ðl; nÞ, which is of-

ten used in boundary layer problems, is applied as

shown in Fig. 1.

6. The motion of the liquid and the solid is non-iner-

tial.

2.1. Governing equations

The curvilinear coordinate system ðl�; n�Þ is chosen in

such a way that, after normalisation, the transverse co-

ordinate n ¼ 0 determines the capsule wall and n ¼ 1

determines the solid–liquid interface [10,11]. For the

case under consideration we choose the scales as

Fig. 1. Close-contact melting inside an elliptic capsule.
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s0 ¼ 2b; l0 ¼ a; n0 ¼ h0; T0 ¼ T �
w0 � T �

m;

p0 ¼ bgðqs � qlÞ; u0 ¼ aw0=h0:

Here, T �
w0 is a characteristic temperature of the wall of

the capsule. The characteristic excess pressure p0 is taken
as the typical difference between the gravitational and

buoyancy forces acting on the solid per unit area of its

surface, which must be balanced by the pressure rise

over its hydrostatic value in order to keep the solid

floating. The other scales will be determined from in-

vestigation of the governing equations. Further, we will

assume the non-dimensional melting temperature to be

zero, Tm ¼ 0.

On the basis of assumption (5), the conservation

equations of mass, momentum and energy in dimen-

sionless form can be written as

ow
on

þ 1

xm

oðxmhuÞ
ol

¼ 0; m ¼ 0; 1; ð1Þ

op
ol

¼ g
h2

o2u
on2

; g ¼ lu0a
p0h20

; ð2Þ

op
on

¼ 0; ð3Þ

Ste u
oT
ol

�
þ w

h
oT
on

�
¼ 1

h2
o2T
on2

; ð4Þ

where m ¼ 0 identifies the elliptic cylinder and m ¼ 1

identifies the ellipsoid of revolution. These are essen-

tially the lubrication equations with an accuracy OðeÞ
expressed in curvilinear coordinates. Here the terms of

OðeÞ are neglected since the parameter e ¼ h0=a, which
represents the ratio of the gap-width scale to the char-

acteristic dimension of the capsule, is very small and

varies in the range 10�3–10�2 for different phase-change

materials used in thermal-storage systems. Eq. (1) is the

mass balance, (2) and (3) express the longitudinal and

normal force balance, and (4) is the steady-state energy

balance. To order OðeÞ, the Stefan condition at the so-

lid–liquid interface n ¼ 1 yields

w ¼ u
h
oT
on

� �
n¼1

; u ¼ klðT �
w0 � T �

mÞ
h0qlLmw0

: ð5Þ

To the same order of accuracy, the transverse velocity at

the solid–liquid interface n ¼ 1 can also be found as

w ¼ �r_ss cos h; r ¼ 2qsb
qlw0s0

: ð6Þ

From (3) it can be seen that p is a function of only one

independent variable l. Equating g ¼ 1 in (2), u ¼ 1 in

the Stefan condition (5) and r ¼ 1 in (6) yields the scales

for the molten layer thickness, transverse velocity and

time as follows:

h40 ¼
a4Steb

2

ArPr
; w0 ¼

klðT �
w0 � T �

mÞ
qlh0Lm

; s0 ¼
2bqs

w0ql

: ð7Þ

Because the typical timescale for the solid is qscsa
2=ks,

assumption (2) requires

qscsa
2

ks
� 2bqs

w0ql

: ð8Þ

For n-octadecane, aP 5 cm, and the typical temperature

difference of 20 �C, we derive for a circular capsule

ej�bb¼1 < 0:0037.
It should be noted that the adopted scales are valid

for capsules with moderate aspect ratios (�bb ¼ b=a 	 1)

and for oblate ones b=a � 1. If the capsule is vertically

elongated and �bb 
 1, then instead of a, b should be

taken as the spatial scale, and, moreover, cos h 	 a=b.
The scales in the latter case can be found completely

analogously as was done above. For these two cases of

strongly elongated and oblate capsules with fixed cross-

sectional area r2 ¼ ab and different scales, we obtain for

the elongated capsules

s0 / �bb�7=8; �bbP 1; ð9Þ

and for oblate ones

s0 / �bb1=8; �bb�1 P 1: ð10Þ

From here it can be seen that, asymptotically, as
�bbn ! 1, where n ¼ 1 for elongated capsules and n ¼ �1

for oblate ones, the characteristic time of melting for

elongated capsules decreases faster than that for oblate

ones. This will also be confirmed by computations.

If capsules of different aspect ratios, but the same

cross-sectional area are considered, then we have the

lubrication approximation accuracy for oblate capsules

ð�bb6 1Þ

h0=a ¼ �bb1=8ej�bb¼1 ð11Þ

and for elongated ones ð�bbP 1Þ

h0=b ¼ �bb�3=8ej�bb¼1: ð12Þ

This means that the accuracy of the lubrication ap-

proximation for the flow in the region where the close-

contact melting takes place increases for both capsules.

In order to estimate the general accuracy of the

model, the effect of natural convection on the melting at

the upper surface of the solid must be taken into ac-

count. This effect can be estimated in considering the

thin thermal boundary layer of the relatively cold melt

generated on the inclined upper surface of the solid core,

which flows down governed by the friction – buoyancy

balance [1–3]. The heat flux at the upper surface of the

solid core can be estimated as klðT �
w0 � T �

mÞ=d. The di-

mension of the boundary layer thickness for the elon-

gated capsule is determined by scaling analysis [12] of
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the mass, momentum equations and the Stefan condi-

tion: wt � dut=b, lut=d
2 � qlgbðT �

w0 � T �
mÞ and klðT �

w0 �
T �
mÞ=d � qswtLm, where wt and ut are scales for the

transverse and longitudinal velocities in the thermal

boundary layer on the top of the melting solid. The

above equations yield d=b � Ra�1=4, where Ra ¼ gbqlqs�
b3Lm=ðlklÞ. For oblate capsules, the analysis is analo-

gous, however, a must be used as the longitudinal scale,

while �bbg is the gravity force projection along the layer.

Considering capsules of different aspect ratios, but the

same volume (r2 ¼ ab ¼ const:) as before, and taking

into account Eqs. (11) and (12) and that b ¼ r�bb1=2, the
relative contribution of the melting at the upper surface

for oblate and elongated capsules can be finally assessed

as

h0
d
¼ ðRa1=4eÞj�bb¼1: ð13Þ

The above relationship does not depend on the capsule’s

aspect ratio. This is because an increase of the aspect

ratio of the capsules leads to the simultaneously equal

increase of the thickness of the boundary layers beneath

the solid and above it. The rate of this increase with

regard to variation of the aspect ratio, however, is larger

for the oblate capsule and, therefore, its melting rate is

lower than that of the elongated one. This means that in

studying the shape-factor effect on the melting rate of

capsules, it is possible to compare melting rates of cap-

sules with the same volume, neglecting the melting at the

upper surface, which then can be taking into account

simply by increasing the melting rate by the factor of

1þ ðRa1=4eÞj�bb¼1. For n-octadecane melting conditions

ql ¼ 770 kg=m
3
, qs ¼ 884 kg=m

3
, l ¼ 3� 10�3 s N=m

2
,

cl ¼ 1:6 kJ=kg K, kl ¼ 0:15 W/m K, Lm ¼ 240 kJ/kg,

T �
w0 � T �

m ¼ 20 �C, b ¼ 10�3 K�1 and r ¼ 0:05 m, we

have ðRa1=4eÞj�bb¼1 ¼ 0:095. Therefore for this particular

case, the effect of the melting at the upper surface is

about 10% of the close-contact melting. It is gratifying

to see that the latter estimate is in exact agreement with

experimental data available in [2,3].

Balancing the forces acting on the solid in the vertical

direction, namely the gravitational force and the force

exerted by the liquid, yields with an accuracy of OðeÞ:
Z ffiffiffiffiffiffiffi

1�s2
p

0

pxm dx ¼ FmðsÞ; m ¼ 1; 0; ð14Þ

where

F0 ¼ ðarccos s� s
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
Þ; F1 ¼

2

3
� sþ s3

3
: ð15Þ

The magnitude of the gravitational force at the RHS of

Eq. (14) depends on the solid bulk volume which varies

with time since s is a function of time. As it can be seen

from Eqs. (15), in the final stage of the melting process

when s tends to 1, the volume of the solid bulk and,

therefore, the magnitude of the gravitational force

vanish to zero. At the LHS of Eq. (14), the force acting in

the direction opposite to the gravitational force is rep-

resented by the force of pressure in the liquid layer. The

other component of this force caused by the shear

stresses is ignored since its magnitude is of order OðeÞ.

2.2. Evolution equation for the solid motion

Integrating Eq. (2) twice with respect to n and taking

into account the no-slip conditions on both the capsule

wall and melting interface yields

u ¼ h2

2

op
ol

ðn2 � nÞ: ð16Þ

Substituting Eq. (16) into the continuity equation (1),

integrating with respect to n and l, and taking into ac-

count (6) and the impermeability condition on the wall

of the capsule, we derive the expressions for the pressure

gradient and the transverse velocity

op
ol

¼ � 12x_ss
ðm þ 1Þh3 ; ð17Þ

w ¼ _ss cos hð2n3 � 3n2Þ: ð18Þ

Using the expression for the pressure gradient (17) we

can write the force balance equation (14) in the form

12_ss

ðm þ 1Þ2
Z ffiffiffiffiffiffiffi

1�s2
p

0

xmþ2

h3 cos h
dx ¼ Fm ðm ¼ 0; 1Þ; ð19Þ

where F0 and F1 are determined by Eq. (15). Integrating

the energy equation (4) with respect to n in the interval

ð0; 1Þ and using the mass conservation equation (1) and

the Stefan condition (5), we derive the energy balance

equation in the integral form

Ste
xm

o

ol
hxm

Z 1

0

uT dn

0
@

1
A ¼ qw � _ss cos h; ð20Þ

where qw ¼ qwðlÞ is the transverse heat flux at the wall of
the capsule.

2.3. Simplified model of close-contact melting

As it was already mentioned, the derivation of the

mathematical model presented above is based on the

fact that the parameter e ¼ h0=a 	 10�3–10�2, therefore

values of order OðeÞ are ignored. This model is governed

by another small parameter – the Stefan number. For a

number of situations and a variety of phase-change

materials Ste < 0:5. The latter allows us to implement

the perturbation methods and to neglect in the fur-

ther analysis the terms of the order of OðSte2Þ. Within

the bounds of the adopted accuracy, the temperature
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profile, which should be substituted into the LHS of Eq.

(20), can be taken as follows:

T ¼ Twð1� nÞ þOðSteÞ: ð21Þ

From the Stefan condition (5) and Eq. (21) it also fol-

lows that

Tw ¼ h_ss cos h þOðSteÞ: ð22Þ

Substituting the expression for tangential velocity (16)

and the linear temperature profile across the molten

layer (21) into the LHS of the energy balance equation

(20), where the pressure gradient op=ol and the wall

temperature Tw are defined by Eqs. (17) and (22), re-

spectively, after integration over l we derive, with an

accuracy of OðSte2Þ,

Steh_ss cos h ¼ 2
m þ 1

_ssxmþ1

Z l

0

xmqw dl

0
@ � 1

1
A: ð23Þ

If the heat flux distribution on the wall of the capsule,

qw ¼ qwðlÞ, is given, then (23) and the force balance

equation (19) constitute an integro-differential system,

from which the shift of the solid core, s ¼ sðsÞ, and the

thickness of the molten layer, h ¼ hðl; sÞ, can be deter-

mined. For an arbitrary qw, this system of equations can

be solved numerically, however, the closed-form ana-

lytical solution can be readily obtained, provided that on

the wall of the capsule the special heat flux distribution

is assumed as qw ¼ q cos h, where q does not depend on l,

and cos h ¼ dx=dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cx2

p
. Evidently, be-

cause the heat flux at the melting interface is equal to

_ss cos h, the adopted heat flux at the wall is proportional

to that at the melting interface. As is shown below, this

assumption leads to the uniform temperature on the

capsule’s wall, which is physically feasible [6] and has

been widely used in the previous research [1–5].

For the adopted form of the heat flux at the wall, Eq.

(23) converts to

h ¼ 2ðq� _ssÞ
Ste _ss2

; �hh ¼ h cos h; ð24Þ

from which it follows that the product h ¼ h cos h does

not depend on x and can be a function of the time only.

As a result the force balance equation (19) reduces to

�hh3 ¼ 12_ss

ðm þ 1Þ2Fm

Z ffiffiffiffiffiffiffi
1�s2

p

0

xmþ2 dx
dl

� �2

dx ð25Þ

and the pressure distribution can be found from (17) as

p ¼
3_ss

ðmþ1Þ�hh3 ð1� x2Þ2 � s4
h i

; c ¼ 0;

6_ss
ðmþ1Þ�hh3

1
c þ 1

c2


 �
ln

1þcð1�s2Þ
1þcx2

� 1�s2�x2

c

h i
; c 6¼ 0:

8><
>:

ð26Þ

For the case under consideration, the boundary

conditions at the solid–liquid interface (5) and Tm ¼ 0 do

not depend on l. Therefore, we can suppose that for

the specified case the liquid temperature is a function of

n only, which will be confirmed by the found solution.

Basing on this assumption we reduce the energy equa-

tion (4) by ignoring the first term on the left-hand side.

Then, substituting expression (18) for w into (4) yields

Steh_ssð2n3 � 3n2Þ oT
on

¼ o2T
on2

: ð27Þ

Because (27) does not include coefficients depending on

l, the temperature T will be a function of n only and the

wall of the capsule is isothermal. The temperature dis-

tribution therefore can be readily found to order of

OðSte2Þ

T ¼ h_ss 1

�
� nþ Steh_ss

7

20

�
� n5

10
þ n4

4
� n
2

��
: ð28Þ

For the wall temperature, T jn¼0 ¼ Tw, after some simple

manipulations and ignoring the terms of OðSte2Þ, this
formula gives

h_ss ¼ Twð1� 7SteTw=20Þ; ð29Þ

which, together with (24), determines �qq through the wall

temperature

�qq ¼ _ss 1

�
þ 1

2
SteTwð1� 7SteTw=20Þ

�
: ð30Þ

From (29) it is clear, that the adopted form of the heat

flux at the wall, qw ¼ �qq cos h, linearly proportional to the

heat flux at the melting surface, determines the wall

temperature, constant along the wall, and enables us to

find the temperature distribution to order OðSte2Þ.
Substituting Eq. (29) into the force balance equation

(25) leads to the equation for the downward velocity of

the solid bulk ds=ds

_ss ¼ ½ðm þ 1Þ2FmT 3
wð1� 7SteTw=20Þ3=12Gm�1=4; ð31Þ

where for m ¼ 0

G0 ¼

ð2þ 3s2Þð1� s2Þ3=2=15; c ¼ 0;

�ð1�s2Þ3=2
3c þ 1

c þ 1
c2


 � ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� arctan

ffiffiffiffiffiffiffiffiffiffiffi
cð1�s2Þ

pffiffi
c

p

� �
;

c > 0;

�ð1�s2Þ3=2
3c þ 1

c þ 1
c2


 � ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p
� arth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð1�s2Þ

p ffiffiffiffi
�c

p

� �
;

c < 0

8>>>>>>>><
>>>>>>>>:

and for m ¼ 1

G1 ¼
ð1þ 2s2Þð1� s2Þ2=12; c ¼ 0;

� ð1�s2Þ2
4c þ ð1þcÞð1�s2Þ

2c2 � 1þc
2c3 ln½1þ cð1� s2Þ�;

c 6¼ 0:

8>><
>>:
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Eq. (31) includes only two dimensionless parameters.

Parameter c ¼ ðb=aÞ2 � 1 depends on the aspect ratio

b=a of the ellipse and the Stefan number characterises

the effect of the material properties and wall tempera-

ture. If the wall temperature is constant also with regard

to time, then because the functions F and G depend only

on s and c, we can eliminate the factor at the RHS of

(31) depending on Tw and Ste by rescaling the time s

~ss ¼ s½ðm þ 1Þ2T 3
wð1� 7SteTw=20Þ3=12�1=4 ð32Þ

to derive in new variables

ds=d~ss ¼ ½Fm=Gm�1=4: ð33Þ

Therefore, the knowledge of the function sð~ss; cÞ when

b=a is fixed permits us to find solution of the problem for

all quantities of the cross-sectional area of the ellipse,

wall temperature and material properties. On the other

hand, if then function s� and the time of complete

melting s�m are found from natural experiments on

melting of any particular material in an elliptical capsule

of fixed aspect ratio and arbitrary cross-sectional area,

then s� and s�m can be readily obtained for any other

material, wall temperature, cross-sectional area and the

same ellipse aspect ratio by means of scale transforma-

tion.

Let us consider a different situation, when the ellipse

cross-sectional area r2 ¼ ab and the Stefan number are

fixed, whereas the aspect ratio is changed. Considering

two cases of melting of the same material induced by the

same wall temperature inside the capsules with different

ellipse aspect ratios, which are denoted by subscripts 1,

2, we have s�m1=s
�
m2 ¼ ðb1=b2Þ1=8~ssm1=~ssm2, where ~ssm de-

pends only on the aspect ratio of the ellipse. Hence, the

ratio of dimensional times required for complete melting

is affected only by the values of the aspect ratios and

does not depend on the cross-sectional area of the cap-

sule, material properties and wall temperature.

Since the LHS of Eq. (27) is a value of OðSteÞ and the

parameter Ste is small, the heat transport between the

solid and the capsule wall is dominated by conduction in

the transverse direction. Because the developed model

accounts for the heat convection due to the adopted

form of the heat flux on the wall, which enables us to

find the temperature distribution to order of OðSte2Þ, it
is advantageous to introduce the Nusselt number, in

order to describe the effect of the heat convection in the

molten layer on the heat transfer across it. The Nusselt

numbers at the wall of the capsule, Nuw, and at the

melting interface, Num can be defined as

Nuw ¼ 1

T jn¼1 � Tw

oT
on

����
n¼0

;

Num ¼ 1

T jn¼1 � Tw

oT
on

����
n¼1

:

ð34Þ

Taking into account the temperature distribution (28)

and neglecting the terms of order Ste2, we derive

Nuw ¼ 1þ 3

20
SteTw; Num ¼ 1� 7

20
SteTw: ð35Þ

For Ste ¼ 0:1, we have corrections of 1.5% and 3.5%,

respectively, which means that in this case the heat flux

at the wall can be satisfactorily approximated by the

linear interpolation of the temperature distribution.

Mathematically it means that, in this case, the convec-

tion term at the RHS of Eq. (4) can be neglected. For

larger values of the Stefan number, however, the linear

approximation will be too rough, and the corrections are

necessary to include. Because the developed model de-

termines the temperature distribution to order of OðSte2Þ
accounting for the convection, it can accurately describe

contact melting processes characterised by relatively

large Stefan numbers, say Ste < 0:4.

3. Results and discussion

Among the different phase-change materials used in

the thermal energy storage systems, n-octadecane is

most frequently used. Physical properties of this mate-

rial are well documented. Even though numerical com-

putations provided below are for n-octadecane melting

conditions, general conclusions can be drawn. On the

basis of the closed-form solution obtained above, the

main values characterising the process of contact melt-

ing, such as the pressure, time of melting and melting

rate can be easily calculated.

Because, as can be seen from (26), the pressure profile

with regard to x depends only on x and s, while the other

parameters effect only its amplitude, in Fig. 2 we present

the normalised pressure distribution only for the elliptic

cylinder. Even though the pressure at the bottom of the

elongated capsule (�bb > 1) is higher than in the case of

circular or oblate ones, it is characterised by higher non-

uniformity of distribution than the others. While the

pressure gradient for the oblate capsule is a monotone

function, changing from zero at the centre of the bottom

to its highest value at the marginal point, x ¼ xmax, the

pressure gradient for the elongated capsule is non-

monotone, which is determined by the existence of a

point of inflexion of the curve. The inflexion becomes

stronger as s ! 0. Such a difference in the behaviour is

caused by the difference between the typical slopes of the

capsule walls: for very oblate capsules the wall is almost

horizontal, and the pressure, supporting the solid afloat,

is distributed uniformly with regard to x; for highly

elongated capsules the wall is close to vertical, and the

pressure, necessary to support the solid, is concentrated

in the small region, where the wall slope is still gentle –

near the vertical principal axis. Supporting the solid at

higher slopes of the contact surface would require much
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higher pressure there, which would lead to a negative

pressure gradient along the wall, hampering the melt

outflow. This explanation is also supported by the

weakening of the peculiarity as s ! 1, namely, when the

width of the solid becomes smaller, and its mean surface

slope becomes more gentle. Moreover, because h ¼
�hh= cos h, and �hh ¼ const, we have h 	 1= cos h. For

moderate x, cos h 	 a=b � 1, while cos h 	 1 when

x 	 a=b. Therefore, in a small region around the vertical

semi-axis with the typical length a=b, the molten layer

thickness sharply decreases, which leads to the sharp

increase of the pressure.

The pressure variation at the bottom of the capsule,

x ¼ 0, during melting is presented in Fig. 3. As it can be

expected, the pressure decreases with time from its

maximal, initial, value, when s ¼ 0 up to zero at the final

stage, when s ¼ 1. 3 Moreover, the pressure for the el-

lipsoid of revolution is higher than that for the cylinder

of the same area of vertical cross-section, because as

x ! 0, the area of the horizontal cross-section at

y ¼ �bbð1� xÞ1=2 tends to zero as x2 for the ellipsoid of

revolution, and x for the elliptic cylinder, while the

pressure exerted on these areas must support the same

mass of the solids.

Variation of the melting rate during the melting is

shown in Fig. 4. It can be seen that the melting rate of

the ellipsoid of revolution is higher than that of the el-

liptic cylinder, which is caused, firstly, by the smaller

molten-layer thickness caused, in turn, by higher pres-

sure, as was shown above, and, secondly, by the larger

area of contact melting due to the closed form of its

surface. Another feature of the process is that for the

oblate capsules the melting rate changes slowly during

the melting, while for the elongated ones, the melting

rate decreases much faster. This can be explained by the

following. As was shown in Fig. 2, for the elongated

capsules the pressure is concentrated in a small region

near the vertical semi-axis, while for the oblate ones it is

distributed much more homogeneously. Therefore,

during the melting the solid mass in the elongated cap-

sule decreases while the main region of the pressure re-

mains the same, which leads to the pressure drop and the

slowing of the melting. In case of the oblate capsules,

the solid mass decreases together with the main region of

the pressure, therefore, the change of the melting rate

during the melting is much less pronounced.

In order to estimate the effect of the shape factor on

the effectiveness of melting it is reasonable to consider

capsules of the same cross-sectional area, which means

that the quantity r2 ¼ ab is fixed. Since the adopted

scales depend on a and b, we present results of compu-

tations for different a and b using the scales obtained

above when a ¼ b ¼ r, which corresponds to a circular

Fig. 3. Variation of the pressure at the bottom (x ¼ 0) during

the melting process for the capsules with different aspect ratios.

m ¼ 0 for the elliptic cylinders, and m ¼ 1 for the ellipsoids of

revolution.

Fig. 2. The normalised pressure distribution with regard to x

for different ellipse aspect ratios, �bb ¼ b=a, at the beginning

(s ¼ 0) and end (s ¼ 0:99) of melting. At the end of the melting

(s ¼ 0:99), the normalised pressure distribution for the circular

(b=a ¼ 1) and oblate (b=a ¼ 0:2) capsules differs insignificantly,
therefore it is presented by one curve.

3 It should be noted that in Figs. 3 and 4 the curves

corresponding to different values of �bb are obtained using

different scales, because these scales depend on a and b.

However, for the same values of a and b, the scales do not differ

if the capsule is an elliptic cylinder or an ellipsoid of revolution.
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cylinder or a sphere. We will denote the time of complete

melting in these variables by srm. Fig. 5 shows how the

complete time of melting varies with the aspect ratio

ðb=aÞn. For the elongated capsules the exponent n ¼ 1

and the aspect-ratio b=a > 1, for the oblate capsules

n ¼ �1 and, hence, the aspect ratio b=a < 1: As can be

seen, the elliptical capsules with large aspect ratios show

higher rate of melting than the circular ones, and the

elongated capsules are characterised by higher rate of

melting than the oblate ones (which also follows from

the scaling analysis (9), (10)), therefore the aspect ratio

b=a can be used as a control parameter for the time of

melting. The time required for complete melting can be

achieved by the right choice of the shape of the capsule,

which is specified by the value of the aspect ratio.

However, it is interesting to note, that the maximal

time of melting is achieved when b=a ¼ 0:8, but not

when the capsule is circular, b=a ¼ 1. This can be ex-

plained by the existence of two mechanisms influencing

the effectiveness of the melting. Firstly, as the aspect

ratio increases, the area of contact melting also in-

creases, which leads to the higher effectiveness of the

melting. On the other hand, the effectiveness of the

melting depends also on the thickness of the molten

layer, which is thinner for elongated capsules than for

oblate ones, due to the larger pressure, exerted by the

liquid on the solid. Therefore, when the aspect ratio of

an oblate capsule increases, these two mechanisms

counteract, which, for moderate aspect ratios, leads to

prevailing of the second one, as is demonstrated by the

increase of the complete melting time for �bb < 0:8. The
mechanisms balance each other at �bb ¼ 0:8, and when

the aspect ratio increases further, the first mechanism

prevails. This counteraction leads to lower effectiveness

of melting for oblate capsules, which was also deter-

mined by the scaling analysis (9) and (10), performed for

large aspect ratios.

As it was already mentioned, the present calculations

are carried out for the typical n-octadecane melting

conditions; in this case Stefan number Ste � 0:1. Hence,

according to Eq. (31), if the forced convection along the

gap between the capsule wall and melting surface in the

close-contact melting area is ignored (assuming in (31)

parameter Ste ¼ 0), then it would result in approxi-

mately 3.5% exaggeration of the melting rate. For other

phase-change materials and melting conditions, when

Stefan number becomes larger, the effect of the forced

convection on the melting rate would be proportionally

stronger.

4. Conclusions

The analysis presented in this paper allowed us to

find a closed-form solution describing motion of a

melting solid inside elliptic cylinders and ellipsoids of

revolution. The temperature distribution is found to

order OðSte2Þ, which yields the correction 7Ste=20 to its

linear approximation, caused by accounting for the

convective heat transfer in the molten layer.

The scaling analysis and numerical calculations

showed that the melting rate of solids in elliptic capsules

is effected by their aspect ratios. Generally, the melting

rate is higher for elongated capsules than for oblate

ones, which is caused by the smaller thickness of the

Fig. 5. Variation of the time of complete melting inside the

elliptical capsules of the same cross-sectional area vs the ellipse

aspect ratio.

Fig. 4. Variation of the melting rate, ds=ds, with time for the

capsules with different aspect ratios.
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molten layer due to the higher pressure exerted by the

solid. In the first case, the pressure, supporting the solid

afloat, is concentrated in a small region near the vertical

semi-axis, where the surface slope is still gentle, while,

for oblate capsules, the pressure is distributed relatively

uniformly over the solid surface. This feature is also

responsible for fast decrease in time of the melting rate

for the elongated capsules in comparison with that for

the oblate ones.

Such qualitative conclusions on the influence of the

aspect ratio and shape of the capsules on the melting

rate can be applied not only to melting in elliptic cap-

sules but also in capsules with other anisotropic forms.

A necessary melting rate can be achieved by choosing

specific form of the capsule.
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